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Drifts impact scrape-off layer transport and plasma-wall interactions
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• W7-X utilizes an island divertor: scrape-off layer

(SOL) formed by intersection between magnetic

islands and divertor targets

• Island divertor SOL has long connection lengths

(~100x larger than tokamak SOL) → ⊥ transport

stronger than ∥ transport

• 𝐸 × 𝐵 drifts are an important ⊥ transport mechanism

→ can impact SOL plasma distribution and

heat/particle loads on plasma facing components

• Previous work has shown poloidal 𝐸 × 𝐵 drifts

alter heat flux distribution on divertor in W7-X1

• Goal: understand how drifts affect SOL transport

1K.C. Hammond et al, PPCF 61 125001 (2019)
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CIS velocity measurements 

(forward field, high density)

Coherence imaging spectroscopy measurements show drifts alter 

SOL parallel flows

• Coherence imaging spectroscopy (CIS): camera-

based interferometer measuring carbon impurity 

flows in the SOL

• High-density plasmas exhibit counter-streaming flow 

patterns aligned with SOL islands

• Counter-streaming flow pattern changes upon field 

reversal → indication of drift effects

• Low-density plasmas instead exhibit near-

unidirectional flow throughout and across multiple 

islands

• Flow direction reverses with field → drifts 

responsible for near-unidirectional flow pattern

D.M. Kriete et al, NF 63 026022 (2023)
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CIS velocity measurements 

(reverse field, high density)

Coherence imaging spectroscopy measurements show drifts alter 

SOL parallel flows

• Coherence imaging spectroscopy (CIS): camera-

based interferometer measuring carbon impurity 

flows in the SOL

• High-density plasmas exhibit counter-streaming flow 

patterns aligned with SOL islands

• Counter-streaming flow pattern changes upon field 

reversal → indication of drift effects

• Low-density plasmas instead exhibit near-

unidirectional flow throughout and across multiple 

islands

• Flow direction reverses with field → drifts 

responsible for near-unidirectional flow pattern

D.M. Kriete et al, NF 63 026022 (2023)
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CIS velocity measurements 

(forward field, low density)

Coherence imaging spectroscopy measurements show drifts alter 

SOL parallel flows

• Coherence imaging spectroscopy (CIS): camera-

based interferometer measuring carbon impurity 

flows in the SOL

• High-density plasmas exhibit counter-streaming flow 

patterns aligned with SOL islands

• Counter-streaming flow pattern changes upon field 

reversal → indication of drift effects

• Low-density plasmas instead exhibit near-

unidirectional flow throughout and across multiple 

islands

• Flow direction reverses with field → drifts 

responsible for near-unidirectional flow pattern

D.M. Kriete et al, NF 63 026022 (2023)
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CIS velocity measurements 

(reverse field, low density)

Coherence imaging spectroscopy measurements show drifts alter 

SOL parallel flows

• Coherence imaging spectroscopy (CIS): camera-

based interferometer measuring carbon impurity 

flows in the SOL

• High-density plasmas exhibit counter-streaming flow 

patterns aligned with SOL islands

• Counter-streaming flow pattern changes upon field 

reversal → indication of drift effects

• Low-density plasmas instead exhibit near-
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A 1D island SOL drift model is developed to understand how drifts 

affect parallel flows
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• Poloidal 𝐸 × 𝐵 drifts directions in the island SOL

• 𝐸𝑟 tends to point ⊥ to island flux surfaces in direction of O-point

• 𝑣𝐸,𝜃 transports particles poloidally about island O-point

• Radial 𝐸 × 𝐵 and diamagnetic drifts expected to be weaker than poloidal 

𝐸 × 𝐵 drift for the low-density plasmas being investigated

• 1D island SOL drift model

• Geometry: 1D in island poloidal direction, focus on

outermost island flux surfaces

• Main assumptions:

• constant 𝑇𝑒 along each field line → sheath-limited regime

• particle/energy sources dominated by transport from main 

plasma

• constant drift velocity
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A 1D island SOL drift model is developed to understand how drifts 

affect parallel flows
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Poloidal 𝑬 × 𝑩 drift

• Poloidal 𝐸 × 𝐵 drifts directions in the island SOL

• 𝐸𝑟 tends to point ⊥ to island flux surfaces in direction of O-point

• 𝑣𝐸,𝜃 transports particles poloidally about island O-point

• Radial 𝐸 × 𝐵 and diamagnetic drifts expected to be weaker than poloidal 

𝐸 × 𝐵 drift for the low-density plasmas being investigated

• 1D island SOL drift model

• Geometry: 1D in island poloidal direction, focus on

outermost island flux surfaces

• Main assumptions:

• constant 𝑇𝑒 along each field line → sheath-limited regime

• particle/energy sources dominated by transport from main 

plasma

• constant drift velocity
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• 𝐸𝑟 tends to point ⊥ to island flux surfaces in direction of O-point

• 𝑣𝐸,𝜃 transports particles poloidally about island O-point

• Radial 𝐸 × 𝐵 and diamagnetic drifts expected to be weaker than poloidal 

𝐸 × 𝐵 drift for the low-density plasmas being investigated

• 1D island SOL drift model

• Geometry: 1D in island poloidal direction, focus on

outermost island flux surfaces

• Main assumptions:

• constant 𝑇𝑒 along each field line → sheath-limited regime

• particle/energy sources dominated by transport from main 

plasma

• constant drift velocity



𝒗∥

𝒗∥

stagnation 

point

𝒗𝑬,𝜽

𝒗∥

𝒗∥

stagnation 

point
𝒗𝑬,𝜽

𝒗∥

𝒗∥

stagnation 
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Parallel flow in island with 

poloidal drift (reverse field)

E × B drifts are predicted to alter the SOL pressure distribution, 

resulting in a poloidal shift of the parallel flow stagnation point

Parallel flow in island 

without drifts

Poloidal transport in islands 

exclusively driven by poloidal 

component of 𝑣∥

Stagnation point at island 

center (halfway between 

targets)

Parallel flow in island with 

poloidal drift (forward field)

𝑩

Drift transports particles 

poloidally → density buildup in 

upper half of island

Stagnation point shifts toward 

upper half of island

Stagnation point shifts toward 

lower half of island

Blue: 𝒗∥ 

clockwise 

around torus

Red: 𝒗∥ counter-

clockwise 

around torus
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Drift transports particles 

poloidally → density buildup in 

lower half of island



𝒗∥

𝒗∥

stagnation 
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𝒗𝑬,𝜽

CIS measurements showing near-unidirectional flow at low density 

are consistent with poloidal E × B drift transport

Expected CIS image based on drift 

model prediction (forward field)

For 𝑣𝐸,𝜃 ≳ 100 Τm s, model predicts

that CIS will observe a near-

unidirectional flow pattern in counter-

clockwise (red) direction

CIS image at low density is 

largely red, consistent with 

prediction

Drift model prediction for 

forward field

𝑩

Model predicts that 𝑣𝐸,𝜃 will 

cause stagnation point to shift 

poloially clockwise → over most 

of island 𝑣∥ is in red direction

CIS measurements in low-

density plasmas (forward field)
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𝒗∥

𝒗∥

stagnation 

point

𝒗𝑬,𝜽

𝑩

CIS measurements showing near-unidirectional flow at low density 

are consistent with poloidal E × B drift transport

Expected CIS image based on drift 

model prediction (reverse field)
Drift model prediction for 

reverse field

CIS measurements in low-

density plasmas (reverse field)

For 𝑣𝐸,𝜃 ≳ 100 Τm s, model predicts

that CIS will observe a near-

unidirectional flow pattern in clockwise

(blue) direction

CIS image at low density is 

largely blue, consistent with 

prediction

Model predicts that 𝑣𝐸,𝜃 will 

cause stagnation point to shift 

poloially counter-clockwise → 

over most of island 𝑣∥ is in blue 

direction
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Forward field: flow bundles rotate 

clockwise with increasing density

Reverse field: flow bundles rotate 

counter-clockwise with increasing density

In high-density plasmas drifts cause the flow stagnation points to 

shift position 
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Poloidal E × B drift induces density asymmetries between upper and 

lower divertors
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𝑣𝐸,𝜃 expected to asymmetrically transport particles

toward upper vs lower divertors

Divertor density asymmetry near strike line

probe 5

• Large upper/lower divertor 𝑛𝑒 asymmetry consistent
with 𝑣𝐸,𝜃 observed for ത𝑛𝑒 < 2 × 1019 m−3

• Asymmetry decreases substantially with increasing ത𝑛𝑒
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lower divertors
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𝑣𝐸,𝜃 expected to asymmetrically transport particles

toward upper vs lower divertors

Divertor density asymmetry in target shadow

probe 9

• Large upper/lower divertor 𝑛𝑒 asymmetry consistent

with 𝑣𝐸,𝜃 observed for all ത𝑛𝑒 in target shadow region

→ Drift is primary transport mechanism into TSR
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Impact of drifts on parallel flows is weaker in a magnetic 

configuration having shorter connection lengths
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Velocity in low-iota configuration 

(forward field, ഥ𝒏𝒆 = 𝟏. 𝟗 × 𝟏𝟎𝟏𝟗 m−𝟑)
• In low-iota configuration, CIS observes unidirectional 

flows for ത𝑛𝑒 ≲ 2 × 1019 m−3

• In standard configuration, counter-streaming flows 

are observed for ത𝑛𝑒 ≈ 2 × 1019 m−3

• Connection lengths 1.5x larger in low-iota than 

standard → weaker drift effects expected in 

standard configuration

• Observation of unidirectional flows in standard 

configuration requires ത𝑛𝑒 ≲ 1 × 1019 m−3

• Consistent with expectations of weaker drift 

effects with decreasing connection length



Impact of drifts on parallel flows is weaker in a magnetic 

configuration having shorter connection lengths
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Velocity in standard configuration 

(reverse field, ഥ𝒏𝒆 = 𝟐. 𝟐 × 𝟏𝟎𝟏𝟗 m−𝟑)
• In low-iota configuration, CIS observes unidirectional 

flows for ത𝑛𝑒 ≲ 2 × 1019 m−3

• In standard configuration, counter-streaming flows 

are observed for ത𝑛𝑒 ≈ 2 × 1019 m−3

• Connection lengths 1.5x larger in low-iota than 

standard → weaker drift effects expected in 

standard configuration

• Observation of unidirectional flows in standard 

configuration requires ത𝑛𝑒 ≲ 1 × 1019 m−3

• Consistent with expectations of weaker drift 

effects with decreasing connection length



Impact of drifts on parallel flows is weaker in a magnetic 

configuration having shorter connection lengths
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Velocity in standard configuration 

(reverse field, ഥ𝒏𝒆 = 𝟎. 𝟕𝟓 × 𝟏𝟎𝟏𝟗 m−𝟑)
• In low-iota configuration, CIS observes unidirectional 

flows for ത𝑛𝑒 ≲ 2 × 1019 m−3

• In standard configuration, counter-streaming flows 

are observed for ത𝑛𝑒 ≈ 2 × 1019 m−3

• Connection lengths 1.5x larger in low-iota than 

standard → weaker drift effects expected in 

standard configuration

• Observation of unidirectional flows in standard 

configuration requires ത𝑛𝑒 ≲ 1 × 1019 m−3

• Consistent with expectations of weaker drift 

effects with decreasing connection length



Conclusions

• The E × B drift modifies transport in the island divertor scrape-off layer of W7-X, resulting in 

changes to the parallel flow structure and density asymmetries between upper and lower divertors

• In the low-iota magnetic configuration, which maximizes the impact of drifts, the parallel flow pattern

depends strongly on density

• At low density, drifts are dominant transport mechanism and lead to near-unidirectional 𝑣∥

• In medium-to-high density plasmas, drifts cause stagnation points to shift poloidally

• Divertor density asymmetries near the strike line are observed only at low density, but in the target 

shadow region strong asymmetries are observed across the entire explored parameter space

• Impact of drifts on 𝑣∥ is weaker in a magnetic configuration with shorter connection lengths
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