Coherence imaging spectroscopy

Coherence imaging spectroscopy (CIS) is an optical technique that uses a polarization interferometer to obtain 2D images of plasma parameters

Compared to dispersive spectroscopy, CIS has higher optical throughput and gives more spatial information, at the cost of reduced spectral information

CIS diagnostic on W7-X

Two CIS diagnostics on W7-X, viewing plasma toroidally and vertically [V. Perseo et al, RSI 91 013501 (2020)]:

- ~1 cm spatial resolution
- ~50 ms time resolution
- Calibrated before/after every discharge using a tunable laser

CIS viewing geometry

Broadening of

line \rightarrow reduction

of fringe contrast

Toroidal view

Accounting for Zeeman splitting in T_i analysis

Major challenge measuring scrape-off layer (SOL) T_i on W7-X: Zeeman splitting and Doppler broadening have comparable effect on linewidth

- SOL T_i in range of 10's of eV
- Magnetic field varies 2.2–2.9 T throughout plasma
- Measuring T_i requires Zeeman splitting to be modelled or independently measured

CIS contrast given by $\zeta = \zeta_I \zeta_D \zeta_{MZ} \zeta_B$

- *ζ*₁: instrument contrast (calibration factor)
- ζ_D : Doppler contrast, $\zeta_D = \exp[-T_i/T_C]$
- ζ_{MZ} : Contrast due to line splitting (multiplet and Zeeman effects)
- ζ_B : Contrast due to background light (e.g. bremsstrahlung or divertor thermal emission)

Zeeman contrast calculated along every CIS line of sight (LOS)

- Magnetic field B is generated by coils \rightarrow known with high accuracy throughout plasma
- Zeeman splitting calculated along CIS lines of sight \rightarrow gives ζ_{MZ} along lines of sight

Example CIS lines of sight

(projected onto image)

250

500

100

1250

volume:

emission possible

many (blue example)

 $v_{m,z}$: frequency of multiplet/Zeeman component v_0 : line center frequency \widehat{N} : interferometer group delay

Connection length Magnetic field along lines of sight along lines of sight

C III line at 465 nm

-Fit, B = 0 T, T = 10 eV, θ = 110

Doppler broadening

Fit. B = 2.2 T. T. = 10 eV. θ = 110

Doppler broadening

+ Zeeman splitting

wavelength in nm

465.2

 $I_{m,z}$: intensity of multiplet/Zeeman component

0.625 0.600 0.575 (550 1000 1500 500

Initial scrape-off layer T_i measurements

T_i using Zeeman contrast averaged over the scrape-off layer islands

Most lines of sight pass through two SOL

regions (orange example), some pass through

Bands of high T_i aligned with islands

Low T_i near divertor, in agreement with spectrometer measurements [D. Gradic et al, NF **61** 106041 (2021)]

 C^{2+} temperature measurements are spuriously large: $T_i = 30-100 \text{ eV}$, while other measurements show $T_{e} = 10-40 \text{ eV}$

 \rightarrow possibly error due to Zeeman contrast variation or unaccounted for line-broadening mechanisms (bremsstrahlung, line-of-sight integration effects, spectral contamination)

Interferometer crystals optimized for measuring T_i

Birefringent crystals in two CIS instruments during OP1.2b were optimized for maximum contrast, i.e., optimized for velocity measurements, not T_i \rightarrow Goal: optimize crystals for C²⁺ T_i measurements using C III line at 465 nm

Doppler contrast

CIS sensitivity to physics parameters is determined solely by the interferometer group delay (proportional to crystal thickness)

Objective: maximize sensitivity to T_i and minimize sensitivity to B

group delay)

• Normalized sensitivity to $B: S_B = \frac{1}{\zeta_{MZ}} \frac{\partial \zeta_{MZ}}{\partial B}$

3000

Multi-delay CIS design

Multi-delay CIS configuration [J.S. Allcock et al, RSI 92 073506 (2021)] promises to improve T_i measurements by independently measuring B

- Standard CIS: coherence measured at one interferometer delay \rightarrow limited spectral information \rightarrow suitable for simple line shapes
- Multi-delay CIS: coherence measured at four interferometer delays simultaneously \rightarrow more spectral information \rightarrow can resolve more complex line shapes

Polarizers and crystal #1 form a linear fringe pattern, encoding coherence at delay \hat{N}_1 Crystal #2, quarter-wave plate, and polarization camera form a pixelated fringe pattern, encoding coherence at delay \hat{N}_2

Two fringe patterns are multiplied together, resulting in combined linear + pixelated fringe patterns encoding coherence at delays $\widehat{N}_1 + \widehat{N}_2$ and $\widehat{N}_1 - \widehat{N}_2$

Distance along LOS (m Connection length used to determine emitting SOL-averaged ζ_{MZ} • L_c is infinite \rightarrow confined plasma \rightarrow no emission • L_c is finite \rightarrow scrape-off layer plasma \rightarrow 50

C²⁺ impurity ion temperature

Multiplet + Zeeman contrast

Ratio of T_i sensitivity to B sensitivity

Initial multi-delay CIS measurements

Multi-delay CIS instrument tested on the Magnetized Dusty Plasma Experiment (MDPX) [E. Thomas et al, IEEE **41** 811 (2013)]

- Low-temperature (~2-4 eV), high field (>3 T) plasma source
- Excellent test bed of instrument response to Zeeman contrast with minimal Doppler broadening

Observed CIS contrast decreases with increasing magnetic field (as predicted)

Predicted contrast for each delay

Observed He spectral line contrast

Contrast reduction (w/B-field) lower than predicted and likely due to overall low contrast levels resulting from imprecise rotational alignment of optical components

Multi-delay CIS instrument recently installed on W7-X for OP2 experimental campaign and first images were captured; commissioning in progress

Conclusions

- Analysis procedure developed to account for the effect of Zeeman splitting on CIS T_i measurements in the 3D island scrape-off layer magnetic topology of W7-X
- Initial SOL T_i measurements with flow-optimized CIS diagnostic yield high T_i bands that may be unphysical, motivating development of a new T_i -optimized instrument
- Crystals optimized for maximum ratio of T_i sensitivity to magnetic field sensitivity have been designed and procured
- Multi-delay CIS configuration developed for T_i -optimized CIS diagnostic:
 - New instrument tested on MDPX to assess effect of Zeeman splitting
 - Installed on W7-X for OP2 run campaign

Work supported by US Department of Energy grant DE-SC0014529 This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019–2020 under grant agreement No 633053. The views and opinions

