Effects of drifts on scrape-off layer transport in W7-X

D.M. Kriete,¹ A. Pandey,² V. Perseo,² J.C. Schmitt,¹ D.A. Ennis,¹ D. Gradic,² K.C. Hammond,³ M. Jakubowski,² C. Killer,² R. König,² D.A. Maurer,¹ F. Reimold,² V. Winters,² and the W7-X Team²

¹Auburn University

- ²Max-Planck-Institut für Plasmaphysik
- ³Princeton Plasma Physics Laboratory

MAX-PLANCK-INSTITUT <u>FÜR PLASMAPH</u>YSIK

low velocity (km/s)

Motivation for studying scrape-off layer drifts

W7-X island divertor: magnetic islands intersect divertors, exhausting heat and particles

Island divertor SOL has much longer connection lengths than tokamak SOL (hundreds vs tens of meters) \rightarrow perpendicular transport from turbulence and drifts expected to be important

- $\mathbf{E} \times \mathbf{B}$ drift: resonates with islands \rightarrow large contribution
- Diamagnetic drift ($\nabla p \times \mathbf{B}$): largely divergence-free, and non-divergencefree component does not resonate with islands \rightarrow weak contribution

Simple SOL model with poloidal $\mathbf{E} \times \mathbf{B}$ drift

In low density plasmas with a simple SOL the poloidal $\mathbf{E} \times \mathbf{B}$ drift is dominant \rightarrow want to model how this drift affects density and flows

Poloidal transport in islands exclusively driven by poloidal component of parallel flow: $v_{\theta,\parallel} = v_{\parallel} \sin(\theta_p)$

- θ_p : field line pitch (≈ 0.001)
- Stagnation point at island center (halfway between targets)

Simple SOL model with $v_{\theta, E \times B}$

- 1D poloidal particle and momentum transport equations
- Assumes constant $v_{\theta, E \times B}$ and constant T_e along field lines

Key model results/insights:

- Drift strength: $\gamma = v_{\theta, E \times B} / (2c_s \tan \theta_p)$
- Divertor density asymmetry $\propto \frac{1+\gamma}{1-\gamma}$
- v_{\parallel} stagnation point shift $\propto 3\gamma 4\gamma^3$
- $v_{\theta}^{'} = 0$ point shift $\propto -\gamma$ (implications for impurity transport)

in direction of $v_{\theta,E\times B}$ $E \times B$ drift: $v_{\theta, E \times B} \rightarrow$ particles start building up due to shift of density in upper half of island (pressure) profile Net poloidal velocity: $v_{\theta} = 0$ point shifts $v_{\theta} = v_{\theta,\parallel} + v_{\theta,E\times B}$ in opposite direction

v_{\parallel} stagnation point shift in low-density plasmas

Low density plasmas ($n_e < 2 \times 10^{19} \text{ m}^{-3}$) have largely unidirectional flow pattern that reverses with field direction, consistent with stagnation point shift predicted by simple SOL drift model

 v_{\parallel} predicted by simple SOL model with poloidal E×B drift

CIS measurements imply $\gamma \gtrsim 0.5 \rightarrow v_{\theta, E \times B} \gtrsim 120 \text{ m/s}$

Drift-induced divertor density asymmetry

101

rtor

2

'n

(1018

Ę

Density asymmetry between upper and lower divertors is consistent in sign with simple SOL drift model across different topological regions

In low density plasmas, $n_{upper}/n_{lower} \approx 2$ $\rightarrow \gamma \approx 0.3 \rightarrow v_{\theta, E \times B} \approx 80$ m/s, somewhat lower than estimate from CIS

As n_e increases, divertor asymmetry disappears in island SOL, but increases in target shadow

 \overline{n}_{e} (10¹⁹ m⁻³)

Forward magnetic field

lower divertor

upper diverto

5.30 5.35 Reverse magnetic field

5.40

lower divertor upper diverto

Conclusions

- At low density, poloidal $\mathbf{E} \times \mathbf{B}$ drift causes stagnation point to shift toward Xpoint and induces density asymmetry between upper and lower divertors
- As density increases, drift-induced asymmetries decrease in the island SOL but persist in the target shadow regions

