
Coherence imaging spectroscopy on W7-X

Drift velocity and ion temperature measurements in the W7-X 
scrape-off layer using coherence imaging spectroscopy

D.M. Kriete,1 J.C. Schmitt,1 V. Perseo,2 

D. Gradic,2 D.A. Ennis,1 R. König,2

D.A. Maurer,1 and the W7-X Team2

1Auburn University 
2Max-Planck-Institut für Plasmaphysik

Motivation for studying scrape-off layer drifts Initial scrape-off layer 𝑻𝒊 measurementsDrift flow investigation with CIS
W7-X island divertor: large magnetic islands intersect divertors, 
exhausting heat and particles from fusion-relevant plasmas
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Coherence imaging spectroscopy (CIS): 
2D polarization interferometer that 
measures impurity emission and flow 
velocity (usually C III line at 465 nm)
[V. Perseo et al, RSI 91 013501 (2020)]
• ~1 cm spatial resolution
• ~50 ms time resolution

Forward model for CIS flow measurements

Field reversal experiments show drifts contribute substantially to SOL flows

Diagnostic improvements for 𝑻𝒊 measurements 

C2+ impurity ion temperature estimated throughout the SOL by assuming 
line width governed by instrument broadening, Doppler broadening, and 
Zeeman splitting

Low 𝑇! near divertor, in 
agreement with spectrometer 
measurements [D. Gradic et al, 
NF 61 106041 (2021)]

Bands of high 𝑇!
aligned with islands

C2+ temperature measurements are spuriously large: 𝑇! = 30–100 eV, 
while other measurements show 𝑇" = 10–40 eV
→ there are likely additional broadening mechanisms that need to be accounted for, 
e.g., bremsstrahlung, line-of-sight integration effects, and spectral contamination

New crystals optimized for 
maximum 𝑻𝒊 sensitivity and 
minimum 𝑩 sensitivity have 
been procured

Conclusions
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Island divertor scrape-off layer (SOL) has much longer connection 
lengths (hundreds of meters) than tokamak SOL (tens of meters) 
→ perpendicular transport from turbulence and drifts expected 
to be important

Divertor heat flux 
deposition profile is 
affected by 𝐄×𝐁 drifts [K. 
Hammond et al, PPCF 61
125001 (2019)]

A simple forward model for CIS flow images was developed to aid 
interpretation of measurements

𝑣CIS =
∫$ 𝜀 𝑣∥)𝐛 + 𝑣& ,𝒓 + 𝑣'.𝜽 0 1ℓ 𝑑𝑙

∫$ 𝜀 𝑑𝑙

𝜀: C III emissivity
𝑣∥: C2+ parallel velocity
𝑣#: C2+ island radial velocity
𝑣$: C2+ island poloidal velocity
'ℓ: vector for CIS line of sight

Synthetic CIS flow images for each flow component 

Basic assumptions on the 𝜺, 𝒗∥, 𝒗𝒓, and 𝒗𝜽 profiles are made:
• 𝜀 distributed uniformly throughout island SOL
• 𝑣∥ directed toward closest target linearly increasing velocity
• 𝑣' uniform throughout SOL (𝐄×𝐁 flow pattern with constant ∇&𝑇")
• 𝑣& from 𝐄×𝐁 flow pattern with linearly increasing 𝐸' toward target

Target-target connection lengths 
used to divide edge plasma into 
distinct topological regions:
• island scrape-off layer (SOL)
• private flux region (PFR)
• target shadowed regions (LTS, 

UTS, and OS)

Directions vectors .𝐛, 0𝒓, and 2𝜽 calculated from Poincare maps 
[see poster PP11.00062 by J.C. Schmitt in this session]

Experiment on W7-X was performed to investigate effect of drifts on SOL
• Low-iota magnetic configuration was used as it has lowest error fields and 

longest connection lengths, maximizing importance of drifts
• Experimental approach: discharges with matched core plasma parameters 

but oppositely directed magnetic fields → similar 𝑣∥ but opposite 𝑣&, 𝑣'

• CIS measurements show that drifts contribute substantially to SOL flows in the low-
iota configuration

• A simple forward model for CIS images was developed to understand how drift flows 
affect CIS measurements

• The model cannot explain many of the features in experimentally measured CIS 
images and needs further improvement

• The model does indicate that poloidal 𝐄×𝐁 flows are responsible for shifting the 
watershed position in CIS images

Simple forward model cannot capture many 
of the experimentally observed flow features
• Forward model with 𝑣∥ = 10 ⁄km s, 𝑣$ =

⁄−15 km s, 𝑣# = 0 ⁄km s is best match to 
reverse field experimental measurements

𝜙 = 36° Poloidal

Forward model shows that 
poloidal drift flows shift the 
zero-flow (or ‘watershed’) 
position in CIS images

Contrast due to Zeeman splitting (C III @ 465 nm)

Ratio of 𝑇! sensitivity to 𝐵 sensitivity

Birefringent crystals used to form 
interference pattern in existing 
two CIS instruments were 
optimized for maximum 
interference pattern contrast, 
i.e., optimized for velocity 
measurements, not necessarily 𝑇!

Building a CIS instrument utilizing the new multi-delay approach [J.S. 
Allcock et al, RSI 92 073506 (2021)], which can better distinguish 
between Doppler broadening and other broadening mechanisms 
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CIS viewing geometry

Goal: experimentally 
investigate drift flows 
throughout the scrape-off 
layer

• CIS instruments were 
optimized for flow 
measurements, not 𝑇!


