Investigations of scrape-off layer ion flows in the low-iota magnetic configuration of W7-X using coherence imaging spectroscopy

D.M. Kriete,¹ V. Perseo,² D.A. Ennis,¹ D. Gradic,² R. König,² D.A. Maurer,¹ J.C. Schmitt,¹ and the W7-X Team²

¹Auburn University ²Max-Planck-Institut für Plasmaphysik

Reverse magnetic field concept that intersects magnetic islands with targets to exhaust heat and particles from fusionrelevant plasmas Heat flux on targets governed by parallel and perpendicular transport in scrape-off layer (SOL) Drifts transport particles and heat perpendicular to field lines in the SOL 20180829.020 $E \times B$ drift: poloidal drift from E_r and radial drift from E_{θ} ; resonates with 60 ms exposure **Regions of interest** islands \rightarrow large contribution $\nabla B \times B$ drift: vertically upward/downward; does not resonate with islands Flow changes with field reversal • Diamagnetic drift ($\nabla p \times B$): largely divergence-free \rightarrow weak contribution Upper left island Flow velocity (km/s) PECH (MW) rget K. Hammond et al. PPCF 61 125001 (2019) (m) 1000 n_e (10¹⁹ m⁻³) length Flow reversal at low n_e but not high n_e 750 Coherence imaging spectroscopy (CIS) on W7-X Upper right island Connection 500 CIS: 2D polarization interferometer that CIS viewing geometry Flow velocity (km/s) 250 measures impurity emission and flow velocity ^bECH (MW) 0 Velocity is weighted by emission and averaged along diagnostic lines of sight C III line at 465 nm selected for this work Connection length (m) 1000 C III dominated by excitation of C24 C III localized to region where T_e = 5–20 750 eV (outside confined plasma \rightarrow in SOL) 500 n_e (10¹⁹ m⁻³) Flow reversal at high n_e but not low n_e 250 Interference Divertor 0 C²⁺ velocity pattern 0 Field-sightline angle (°) -low velocity (km/s) ECH (MW) -low velocity (km/s) 40 demodulation 20 Δ 0.00

Drift investigation experiment

Motivation

• W7-X island divertor: unique

- Approach: plasmas with matched core parameters, opposite magnetic field Similar ∇p drive for v_{\parallel}
- Opposite drift direction for v_{\perp}
- Experiment performed in low-iota magnetic configuration
 - Longest connection lengths in W7-X \rightarrow maximizes importance of drifts
 - Error fields do not resonate with 5/6 island chain

SOL flow measurements upon field reversal

Flows change substantially upon field reversal \rightarrow drifts are important

No clear flow reversal at any n_e

velocity (km/s) 20181002.054 t = 2.5-4 s 80 ms expo

Line of sight (LOS) analysis for each region of interest

- Connection length L_c used to find portion of each LOS inside SOL • 400 m < L_c < 1500 m in SOL
- Assume C III emission only from SOL Field-sightline angle in SOL gives
- sensitivity to v_{\parallel} vs v_{\perp}

Conclusions

- Drifts contribute substantially to SOL flows in low-iota magnetic configuration
 - CIS lines of sight analyzed to determine sensitivity to $v_{\rm II}$ vs $v_{\rm \perp}$
- Effect of drifts on CIS-measured flows varies across image
- Upper left island: Drift flows decrease as n_{ρ} increases
 - Upper right island: Drifts flows increase as n_e increases
 - Divertor: Little/no drift flows at any $n_e \rightarrow$ evidence that parallel flows do not change much with field reversal

Support

Work supported by US Department of Energy grant DE-SC0014529.

EUROfusion and as received fulling from the futuration research and training programme 2014 2018 and 2019-2020 under grant agreement No 63303. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

