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Impurity transport characterization is an important topic in stellarator physics Presentation Outline

[1] R.

For high performance, high density discharges theory predicts that impurities will
accumulate, potentially leading to radiative collapse. [1]

* Transport diagnostics: XICS, HR-XIS,
HEXOS, & LBO

However there is evidence from LHD’s impurity hole to W7-AS’s HDH mode that
high energy confinement and avoidance of impurity accumulation are not ] .
mutually exclusive [1] * OP 1.2b: Impurity transport experiments
For high performance steady state operation, both screening near the edge and
core flushing of impurities will be important. Before possible advanced
operational scenarios can be identified, impurity transport needs to be
characterized under various conditions.

* STRAHL modeling of Fe LBO

* Synthetic sensitivity studies

Specifically an on- to off-axis ECRH scan alters the radial electric field and hence
the neoclassical transport. Therefore comparisons with neoclassical predictions
and the role of turbulent transport in the different heating scenarios can be
evaluated.

* Fe transport during on- and off-axis ECRH

* Summary
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The spectral diagnostics used for the Fe impurity transport experiments

provide the right balance of spatial resolution and spectral coverage
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* Three XICS systems are installed on W7-X with one system having the flexibility to change between eight * Four detectors provide wide VUV spectral coverage to
different crystals during a discharge capture wide range of iron chargestates simultaneously

* Fast time resolution coupled with spatial information from 1-D image make this an ideal diagnostic for * Only provides single, central sightlines (i.e. no spatial
studying impurity transport resolution), but at high time resolution



Example of an iron impurity transport experiment with

corresponding measurements from HEXOS and XICS
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At fixed input ECRH power of P;,¢q;~3.5 MW the ECRH position is
placed further off-axis for each Fe LBO demonstrating an increased

global transport time
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Scaling of impurity global transport times shows

known power degradation

Power weighted vertical position (cm)
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Global transport times: Fe XXIIl ~ 13.28 nm
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At roughly the same line-integrated density, Fe
impurity transport experiments were performed
with ECRH axial scans at various constant ECRH
power levels.

As more ECRH power is deposited into the plasma
the shorter the transport time

In previous W7-X experiments in Helium [3], the
off-axis ECRH scenario shows a significant
increase in impurity iron transport time as
compared to fully on-axis case

[3] A. Langenberg et al Plasma Phys. Control. Fusion 61 014030 (2019)



Utilizing the 1D transport code STRAHL, anomalous transport profiles
can be inferred and further utilized to estimate the inherent

uncertainties and systematics

Impurity emissivity Previous impurity transport
\ work [2] demonstrated

Motivation for synthetic data
generation and sensitivity testing

LeaSt Squqres featon o /}‘b’*} W12 L Determine which model inputs, within
Mminimization STRAHL T A, o their uncertainty levels, limit the least
| koot i _ | squares minimization from recovering

the accurate transport profiles

on signal:

Understand any potential coupling
between model input parameters and
where possible isolate their effect on the
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* STRAHL calculates the radial transport and emission of impurity
ions with input of kinetic profiles and atomic data

* One dimensional means that transport and plasma parameters
are at best calculated in a flux surface averaged sense

* To match the measured emissivities, a least squares minimization
is done by varying STRAHL's input anomalous diffusion and/or
convective velocity profiles until a minimum is found

tfa

The observed anomalous
diffusion was roughly two orders
of magnitude larger than the
calculated neoclassical levels

The inferred anomalous diffusion
profiles were most sensitive to
changes in electron temperature,
neutral density, and connection
length

[2] B. Geiger et al 2019 Nucl. Fusion 59 046009

recovery of the accurate transport
profiles

Construct a best-practices procedure for
performing the least squares
minimization with particular inputs as
free fit parameters.

Establish whether the W7-X impurity
transport diagnostic set is well suited to
accurately infer the transport profiles.




Synthetic sensitivity studies based on realistic W7-X profiles were used
to estimate the uncertainties and systematic errors on the inferred

transport profiles

Initial conclusions from

Individual input parameters were held at the , ,,, ,
synthetic sensitivity studies

experimentally-derived max and min values

profiles utilized to generate noisy
synthetic data based on best experimental inference
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The synthetic signals based on
the W7-X diagnostic coverage
were dramatically less sensitive
to the anomalous convection
velocity, indicating the inclusion
of this transport channel as a
free parameter could easily lead
to inaccurate inferences
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The total averaged error on the inferred anomalous diffusion profile

from the synthetic sensitivity variations are at least ~ 0.5

Average of |Residuall (—) In Tegion p
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m=
]

Uncertainty

Parameter

.. Oto.l]| 1to.6|.6toll1| 1.1to1l.2
source variations
Procedural N.A. 0.07 | 0.04 0.09 0.01
method
Neoclassical & “no
classical 50% to 0.03 0.05 0.13 0.01
200%
transport
N _rav TV
Xeray 0 VUV o5 s | 030 | 0.1 0.13 0.02
timing offset
LBO injection | 5 1 500 | 2.2 2.1 0.35
timing
Outside a
LBO temporal | =y © 004 | 0.04 0.14 0.19
shape :
window
Limiter - .
comnection | 0 f;’ 20 005 | 005 0.12 0.13
length
Divertor .
connection %OO to 0.06 0.03 0.09 0.05
300 m
length
T, far SOL 1 1;(;!16 0.08 0.04 0.10 0.02
T, core +250 eV 0.08 0.05 0.12 0.06
T, entire profile | > 0.04 | 0.06 0.14 0.13
above)
Neutral edge from
hydrogen 0.04 0.04 0.17 0.16

Applying the averaged error derived for each radial
region to the experimentally inferred diffusion
profile that was used as a basis for the synthetic data
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Key results from synthetic
sensitivity studies

Incorrect diagnostic timing offsets
2

have large effects, i.e. > 0.5 mT, on

the accuracy of the inferred diffusion
profile. However the LBO timing
offset can be determined though the
least squares minimization, while
unfortunately the x-ray to VUV timing
offset cannot

The accurate inference of the
anomalous diffusion profile is

2
minimally effected, i.e. ~ 0.2 mT, by

the electron temperature profile
variations within its 1-sigma
uncertainties.

The LBO injection temporal shape is
critically important for accurate
inference of the anomalous diffusion
profile.




At fixed input ECRH power of P;,+4;~3.5 MW, the kinetic profiles

are well matched except for T, as ECRH position is varied
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* As ECRH power is placed more off-axis, core electron temperature peaking is decreased
* Edge gas fueling with feedback control ensured similar density profiles

* lon temperature profiles were consistently stiff



Utilizing only anomalous diffusive transport within STRAHL yields
good reproduction (y;7 < 2 & minimal residual structure) of

observed Iron emissivity
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When only utilizing anomalous diffusion not only are accurate fits
achieved, but also the inferred anomalous diffusion profiles outside

of mid-radius, p > 0.4, match for all three ECRH positions

Electron temperature in EJM configuration lon to electron temperature ratio
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* As reported in [4], the increase in global transport time following

the increase in T—l ratio was verified to be the suppression of
e

turbulence driven by the ion temperature gradient (observed
experimentally by decreased density fluctuations and shown
numerically through gyro-kinetic simulations)
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* However in this ECRH positional scan, all the inferred anomalous

| | | . diffusion profiles roughly match especially considering the
0.2 0.4 0.6 0.8 1.0 1.2 uncertainty analysis from the synthetic simulations, i.e.
Rho (r/a)

[4] Th. Wegner et al 2020 Nucl. Fusion 60 124004
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uncertainty levels of at least ~ 0.5 mT (not plotted)



Log(Normalized Intensity) (arb)

At fixed input ECRH power of Piytq;~4.9 MW the ECRH position is
placed further off-axis for each Fe LBO demonstrating no increased

global transport time
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* Two gyrotrons were always
kept on-axis for a minimum
of ~1.2 MW ECRH going to
the core plasma

* There is a small increase the
in global transport time as
the ECRH position is changed

to further off-axis.




At fixed input ECRH power of P;,+,;~4.9 MW, the kinetic profiles are
well matched as ECRH position is varied leading to similar inferred

anomalous diffusion profiles
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All the inferred anomalous diffusion profiles match for all three
ECRH heating positions when considering the uncertainty analysis
from the synthetic simulations, i.e. uncertainty levels of at least

2
~ 0.5 mT (not plotted)

Although an Increased average inferred anomalous diffusion is
observed for ~4.9 MW scenarios as compared to the ~3.5 MW
scenarios, the differences are well inside the uncertainty levels
and can’t be firmly concluded.

Note the fully on-axis case has significant LBO injection temporal shape errors



Summary

* Spatially resolved line radiation data is necessary for ensuring the inferred profiles are unique.

« Utilizing only anomalous diffusive transport within STRAHL yields good reproduction (y? < 2 & minimal
residual structure) of observed Iron emissivity.

* The Fe impurity transport is dominated by anomalous diffusive flux, at levels at least an order of
magnitude larger than neoclassical & classical flux.

* Although the global transport time demonstrated a distinguishable increase as more ECRH power was
placed off-axis, the inferred anomalous diffusion profiles were indistinguishable when model
uncertainties were considered.

* Unfortunately the total uncertainties stemming from the input parameters and systematics on the least
2

squares inference are on the order of ~1 mT making conclusions based off the on- to off-axis profiles
difficult



EXTRAS



X-ray Imaging Crystal Spectrometer (XICS) provides

spatially resolved emission from medium Z impurities
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Measures impurity line radiation from the highly charged
states of medium and high Z materials

Bragg reflection used in conjunction with the crystal
astigmatism vyields a 1-D image of the plasma

Amounts of medium Z materials required for a measurement
are non-perturbative
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